

Learning Objectives

After this presentation you will be able to:

- Explain how the Laplace transform relates to the transient and sinusoidal responses of a system.
> Convert time functions into the Laplace domain.
$>$ Use Laplace transforms to convert differential equations into algebraic equations.
> Take the Inverse Laplace transform and find the time response of a system.
> Use Initial and Final Value Theorems to find the steadystate response of a system.

The Laplace Transform

Laplace transform converts time domain problems into functions of a complex variable, s, that is related to the frequency response of the system

Time domain

Complex Frequency and The Laplace Transform

Sinusoidal Response From Complex
 Frequency

The radian frequency $j \omega=j 2 \pi f$ same frequency used in phasor analysis

Laplace related to sine response through Euler's Identity. Euler's relates complex exponentials to sine and cosine time functions

$$
\begin{aligned}
& e^{j \omega t}=\cos (\omega t)+j \cdot \sin (\omega t) \\
& e^{-j \omega t}=\cos (\omega t)-j \cdot \sin (\omega t)
\end{aligned}
$$

Adding and subtracting the above relationships gives the exponential forms of sine and cosine

Exponential Forms of Sinusoids

Add the identities
$e^{j \omega t}=\cos (\omega t)+j \cdot \sin (\omega t)$
$e^{-j \omega t}=\cos (\omega t)-j \cdot \sin (\omega t)$
$e^{j \omega t}+e^{-j \omega t}=2 \cdot \cos (\omega t)$
$\frac{e^{j \omega t}+e^{-j \omega t}}{2}=\cos (\omega t)$
Exponential form of Cosine

Since $e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} \cdot e^{j \omega t}$

Subtract the identities

Laplace can give complete response: dc transient and steady-state sinusoidal

Basic Laplace Transform Pairs

Time Domain Function Laplace Domain Function

t Linear ramp (slope 1$) \longrightarrow \frac{1}{\mathrm{~s}^{2}}$

Laplace Transform Examples

Match the following time functions to correct Laplace domain function using the transform pairs.
a.) $10 t$

(3) $\frac{1}{s-5}$

b.) $\mathrm{t} \cdot \mathrm{e}^{-\mathrm{at}} \quad \begin{aligned} & \text { Laplace table } \\ & 3.2 \text { textbook }\end{aligned}$
c.) $e^{5 t}$
d.) $\mathrm{e}^{-2 t}$
(2) $3 \cdot\left(\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+1\right)}\right)$
(4) $\frac{10}{\mathrm{~s}^{2}}$

e.) $3 \cdot \cos (\mathrm{t})$

Laplace Theorems

Laplace of an unknown function

$$
\mathscr{L}\left(\mathrm{f}_{1}(\mathrm{t})\right)=\mathrm{F}_{1}(\mathrm{~s}) \quad \begin{aligned}
& \text { Capitalize unknown function name } \\
& \text { Replace } \dagger \text { with } \mathrm{s}
\end{aligned}
$$ Replace \dagger with s

Laplace
Operator
Symbol

Examples
$\mathfrak{L}\left(\mathrm{i}_{1}(\mathrm{t})\right)=\mathrm{I}_{1}(\mathrm{~s})$
$\mathfrak{L}\left(\mathrm{v}_{1}(\mathrm{t})\right)=\mathrm{V}_{1}(\mathrm{~s})$
Linearity of transform - can multiply by constant
If $\mathscr{L}\left(\mathrm{f}_{1}(\mathrm{t})\right)=\mathrm{F}_{1}(\mathrm{~s})$ and $\mathfrak{L}\left(\mathrm{f}_{2}(\mathrm{t})\right)=\mathrm{F}_{2}(\mathrm{~s})$
Then $\mathscr{L}\left(\mathrm{a} \cdot \mathrm{f}_{1}(\mathrm{t})+\mathrm{b} \cdot \mathrm{f}_{2}(\mathrm{t})\right)=\mathrm{a} \cdot \mathrm{F}_{1}(\mathrm{~s})+\mathrm{b} \cdot \mathrm{F}_{2}(\mathrm{~s})$

Laplace Transforms of Calculus Operators

Laplace Transform turns derivative into multiplication by s
If $\quad \mathfrak{L}\left(\mathrm{f}_{1}(\mathrm{t})\right)=\mathrm{F}_{1}(\mathrm{~s})$

Then $\mathscr{L}\left(\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{f}_{1}(\mathrm{t})\right)=\mathrm{s} \cdot \mathrm{F}_{1}(\mathrm{~s})-\mathrm{f}_{1}(0)$

Subtract any non-zero initial condifitions

For higher order derivatives
0 initial conditions reduces formula to

$$
\mathfrak{L}\left(\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} \mathrm{f}_{1}(\mathrm{t})\right)=\mathrm{s} \cdot\left(\mathrm{~s} \cdot \mathrm{~F}_{1}(\mathrm{~s})-\mathrm{f}_{1}(0)\right)-\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{f}_{1}(0) \quad \mathfrak{L}\left(\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} \mathrm{f}_{1}(\mathrm{t})\right)=\mathrm{s}^{2} \cdot \mathrm{~F}_{1}(\mathrm{~s})
$$

Laplace Transforms of Calculus Operators

Laplace turns integration into division by s

$$
\begin{aligned}
& \text { If } \quad \mathfrak{L}\left(\mathrm{f}_{1}(\mathrm{t})\right)=\mathrm{F}_{1}(\mathrm{~s}) \\
& \text { Then } \quad \mathfrak{L}\left(\int \mathrm{f}_{1}(\mathrm{t}) \mathrm{dt}\right)=\frac{1}{\mathrm{~s}} \cdot \mathrm{~F}_{1}(\mathrm{~s})
\end{aligned}
$$

Examples from circuit analysis:
Capacitor voltage

$$
\mathfrak{L}\left(\mathrm{v}_{\mathrm{C}}(\mathrm{t})\right)=\mathfrak{L}\left(\frac{1}{\mathrm{C}} \cdot \int \mathrm{i}_{\mathrm{C}}(\mathrm{t}) \mathrm{dt}\right)
$$

$$
\mathrm{v}_{\mathrm{C}}(\mathrm{t})=\frac{1}{\mathrm{C}} \cdot \int \mathrm{i}_{\mathrm{C}}(\mathrm{t}) \mathrm{dt} \quad \mathrm{~V}_{\mathrm{C}}(\mathrm{~s})=\frac{1}{\mathrm{C}} \cdot\left(\frac{1}{\mathrm{~s}}\right) \cdot \mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\left[\frac{1}{\mathrm{C} \cdot \mathrm{~s}}\right] \cdot \mathrm{I}_{\mathrm{C}}(\mathrm{~s})
$$

More Examples From Circuit Analysis

Find the Laplace relationship for inductor voltage

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}(\mathrm{t}) \\
& \mathfrak{L}\left(\mathrm{v}_{\mathrm{L}}(\mathrm{t})\right)=\mathfrak{L}\left(\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}(\mathrm{t})\right) \\
& \mathrm{V}_{\mathrm{L}}(\mathrm{~s})=\mathrm{L} \cdot \mathrm{~s} \cdot \mathrm{I}_{\mathrm{L}}(\mathrm{~s})
\end{aligned}
$$

Laplace relationship for resistor voltage

$$
\begin{array}{cc}
\mathrm{v}_{\mathrm{R}}(\mathrm{t})=\mathrm{R} \cdot \mathrm{i}_{\mathrm{R}}(\mathrm{t}) \quad & \mathscr{L}\left(\mathrm{v}_{\mathrm{R}}(\mathrm{t})\right)=\mathfrak{L}\left(\mathrm{R} \cdot \mathrm{i}_{\mathrm{R}}(\mathrm{t})\right) \\
\mathrm{V}_{\mathrm{R}}(\mathrm{~s})=\mathrm{R} \cdot \mathrm{I}_{\mathrm{R}}(\mathrm{~s})
\end{array}
$$

Laplace Transforms and Impedance

Remember phasor analysis is only valid for sinusoidal steady-state. Turns ac analysis into an analysis similar to the dc. (Ohm's law)

Resistance	R	
Inductive Reactance	$X_{L}=j \cdot \omega \cdot L \quad \omega=2 \pi \cdot f$	$j=90^{\circ}$
Capacitive Reactance	$X_{C}=\frac{1}{j \cdot \omega \cdot C}=-j \cdot\left(\frac{1}{\omega \cdot C}\right)$	$-j=\frac{1}{j}=-90^{\circ}$

Since Laplace variable represents frequency, it's possible to replace $j \omega$ with s and s with $j \omega$. If s is replaced with $j \omega$, analysis reverts to phasors We can find the frequency response of a dynamic system by converting differential equation into Laplace domain and replacing s with $j \omega$. Sweeping frequency produces Bode plot of system.

Laplace Transforms and Impedance

```
Laplace "Impedances" (Ohm's Law) Impedance (Phasors)
```

Inductors $\quad \mathrm{Ls}=\frac{\mathrm{V}_{\mathrm{L}}(\mathrm{s})}{\mathrm{I}_{\mathrm{L}}(\mathrm{s})} \quad$ Inductors $\quad \mathrm{j} \omega \mathrm{L}=\frac{\mathrm{V}_{\mathrm{L}}(\mathrm{j} \omega)}{\mathrm{I}_{\mathrm{L}}(\mathrm{j} \omega)}$
Capacitors $\quad \frac{1}{\mathrm{Cs}}=\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{s})}{\mathrm{I}_{\mathrm{C}}(\mathrm{s})} \quad$ Capacitors $\quad \frac{1}{\mathrm{j} \omega \mathrm{C}}=\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{j} \omega)}{\mathrm{I}_{\mathrm{C}}(\mathrm{j} \omega)}$

Resistors

$$
\mathrm{R}=\frac{\mathrm{V}_{\mathrm{R}}(\mathrm{~s})}{\mathrm{I}_{\mathrm{R}}(\mathrm{~s})}
$$

$$
\text { Resistors } \quad R=\frac{V_{R}(j \omega)}{I_{R}(j \omega)}
$$

Laplace Representations of OP AMP Circuits

Find I/O relationship of integrator using Laplace relationships

Use OP AMP theory and solve. No I enters inverting node and $\mathrm{V}^{+}=\mathrm{V}-=0$ due to ground connection.

$$
i_{1 n}(t)+i_{f}(t)=0
$$

Use KCL at inverting node

$$
K C L i_{1 n}(t)=-i_{f}(t)
$$

$i_{i_{\text {i }}(t)}=\frac{V_{\text {in }}(t)-V^{-}(t)}{R_{\text {in }}} \quad i_{f}(t)=c \frac{d}{d t}\left(V_{0}(t)-V^{-}(t)\right) \quad V^{+}(t)=V^{-}(t)=0 \quad$ so $\quad \begin{aligned} & \text { Substitute into } \\ & \text { KCL equation }\end{aligned}$
$i_{\text {in }}(t)=\frac{V_{\text {in }}(t)-V(t)^{0}}{R_{1 n}}=\frac{V_{i n}(t)}{R_{\text {in }}} \quad i_{f}(t)=C \frac{d}{d t}\left(V_{6}(t)-V f(t)\right)=C \frac{d}{d t} V_{0}(t) \quad \frac{V_{\text {in }}(t)}{R_{\text {in }}}=-C \frac{d}{d t} V_{6}(t)$

Laplace Representations of OP AMP

Circuits

$$
\frac{V_{\ln }(t)}{R_{\operatorname{in}}}=-C \frac{d}{d t} V_{6}(t)
$$

Integrate both sides of above equation to get $\mathrm{V}_{0}(\mathrm{t})$. Integration is inverse of differentiation

$$
\begin{gathered}
\frac{1}{R_{\text {in }}} \int V_{\text {in }}(t) d t=-C \int \frac{d}{d t} V_{0}(t) d t \\
\frac{1}{R_{1 n}} \int V_{\text {in }}(t) d t=-C V_{0}(t) \\
\frac{-1}{R_{1 n} C} \int V_{1 n}(t) d t=V_{0}(t) \quad-\frac{1}{R_{1 n} C}\left(\frac{1}{s}\right) V_{\text {in }}(s)=V_{\sigma}(s) \\
\begin{array}{c}
\text { Take } \\
\begin{array}{c}
\text { Laplace of } \\
\text { Equation }
\end{array} \\
\quad \begin{array}{l}
\text { Can use generalized gain } \\
\text { lesson10et438a.pptx }
\end{array} \quad \begin{array}{l}
\text { armula of inverting OP AMP }
\end{array} \\
\text { andace Impedances }
\end{array}
\end{gathered}
$$

Laplace Representations of OP AMP Circuits

Example 10-1: Find the input/output relationship for the circuit shown below.

For inductor
$V_{L}(t)=L \frac{d i_{L}(t)}{d t}$
$\frac{V_{\sigma}(s)}{V_{\text {in }}(s)}=\frac{-Z_{f}(s)}{Z_{\text {in }}(s)}$
$\mathscr{L}\left[V_{L}(t)\right]=V_{L}(s) \quad \frac{V_{L}(s)}{I_{L}(s)}=L_{s}$
$Z_{f}(s)=R_{f}$
$\mathcal{L}\left[L \frac{d i_{2}(t)}{d t}\right]=L_{s} \frac{I}{L}(s)$

Example 10-1 Solution (2)

Substitute into generalized gain formula

$$
\begin{aligned}
& \frac{V_{0}(s)}{V_{\text {in }}(s)}=\frac{-R_{f}}{\frac{R_{\text {in }} L_{s}}{R_{\text {in }} L_{s}}}=-R_{f}\left[\frac{R_{\text {int }} L_{s}}{R_{\text {in }} L_{s}}\right]=\frac{-R_{f}}{R_{\text {in }}}\left[\frac{R_{\text {in }}+L_{s}}{L_{s}}\right] \\
& \frac{V_{0}(s)}{V_{\text {in }}(s)}=-\frac{R_{f}}{R_{\text {in }}}\left[\frac{R_{\text {in }}}{L_{s}}+1\right]=\left(\frac{R_{\text {in }}}{L}\left(\frac{1}{s}\right)+1\right)\left(\frac{-R_{f}}{R_{\text {in }}}\right) \quad \frac{R_{\text {in }}}{L}=\underset{\text { time }}{\text { cinstant }} \\
& V_{0}(s)=\left(\frac{R_{\operatorname{in}}}{L}\left(\frac{1}{s}\right)+1\right)\left(\frac{-R_{f}}{R_{\text {in }}}\right) V_{\text {in }}(s) \\
& -\left(\frac{R_{f}}{R_{\text {in }}}\right)\left(\frac{R_{\text {in }}}{L}\right)\left(\frac{1}{s}\right) V_{\text {in }}(s) \\
& \begin{array}{lll}
\text { OUTPUT is Sum } \\
\text { CONSTANT GAIN }
\end{array} \quad \begin{array}{l}
\text { And integrator } \\
\text { action }
\end{array} \quad-\frac{R f}{L \delta} V_{\text {in }}(s) \quad \begin{array}{l}
\text { Division by s means } \\
\text { Integration in time }
\end{array} \\
& \frac{-R_{f}}{R_{i n}} V_{i n}(s)
\end{aligned}
$$

19	ET 438a Automatic Control Systems Technology
End Lesson 10: The Laplace Transform	
lesson10et438a.pptx	

